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EXECUTIVE SUMMARY 

The deliverable D3.3 “EXCESS Flexibility Analytics Module” constitutes a direct outcome of the Task 3.3 

“Core ICT platform services” and Task 3.4 “Flexibility analysis and forecasting component”, documenting 

the activities that have driven the design and development of the EXCESS Data Analytics Framework. 

The EXCESS Data Analytics Framework comprises the part of the EXCESS system where the data collected 

from the demo sites’ buildings of the project by the EXCESS Data Management Platform, are analyzed 

through specific forecasting and flexibility algorithms in order to produce meaningful results that are 

digested by the rest of the components of the EXCESS system. Such analytics provide input for the EXCESS 

Visualizations that offer valuable insights to the end users of the project, while they also enable the 

operation of the MPC components in the demo sites’ buildings towards the optimal control of the devices 

and loads and the subsequent achievement of the PEB concept. 

This deliverable documents the different components of the EXCESS Data Analytics Framework, namely 

the Comfort Profiling component, the Demand Forecasting component, the Generation Forecasting 

component, the Dynamic VPP Configuration component, the Context-Aware Flexibility Profiling and 

Analytics component, the Flexibility Analytics Visualizations and the Energy Consumptions Visualizations. 

The deliverable D3.3 comprises an accompanying document of the first release of the EXCESS Data 

Analytics Framework and has received input from the deliverable D3.1 “EXCESS ICT Architecture 

Blueprint”, while it will offer input for the activities of WP4 “PEB implementation and monitoring” towards 

showcasing the operation of demo sites’ building using the EXCESS system. The feedback obtained from 

the testing activities of WP4 will be accommodated in the second version of the deliverable D3.3, which 

will describe the final release of the EXCESS Data Analytics Framework in M42 of the project, including 

also any necessary enhancements and additional functionalities. 
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1 Introduction 

1.1 Purpose and scope of the document 

The deliverable D3.3 describes the design and implementation of the EXCESS Data Analytics Framework 

that consists of various components, namely the Comfort Profiling component, the Demand Forecasting 

component, the Generation Forecasting component, the Dynamic VPP Configuration component, the 

Context-Aware Flexibility Profiling and Analytics component, the Flexibility Analytics Visualizations and 

the Energy Consumption Visualizations. The EXCESS Data Analytics Framework accommodates a series of 

different analytical algorithms that provide input for the visualization dashboards of the EXCESS system, 

which offer valuable information to the end users of the project, and provide data to the MPC components 

of the demo sites’ buildings for the smooth controlling of their devices and loads in order to achieve the 

PEB concept. 

This deliverable targets at documenting the state of the art in the different areas of analytics that are 

exploited in the EXCESS Data Analytics Framework and define the functionalities of each component. 

Within the Tasks 3.3 and 3.4 where the first release of the EXCESS Data Analytics Framework has been 

designed and developed, S5 has implemented the Comfort Profiling component, the Flexibility Profiling 

and Analytics component and the Visualization Dashboards. CGSoft has implemented the Demand 

Forecasting component, JR the Generation Forecasting component and VITO the Dynamic VPP 

configuration component. The deliverable D3.3 offers input to WP4 activities for the testing of the EXCESS 

system in the four demo sites’ buildings of the project. 

A second version of the deliverable D3.3 will be delivered in M42 of the project, documenting the final 

release of the EXCESS Data Analytics Framework, where the feedback from the initial operation of the 

demo sites’ buildings will be encapsulated and any updated functionalities will be described. 

1.2 Structure of the document 

In order to address all the aspects relevant to the scope of T3.3 and T3.4, the present deliverable has been 

structured as follows:  

• Section 1 introduces the work performed and the scope of this deliverable along with the deliverable’s 
structure. 

• Section 2 describes an overview of the first release of the EXCESS Data Analytics Framework. 

• Section 3 presents the Comfort Profiling component. 

• Section 4 presents the Demand Forecasting component. 

• Section 5 presents the Generation Forecasting component. 

• Section 6 presents the Context-Aware Flexibility Profiling and Analytics component. 

• Section 7 prenents the Dynamic VPP Configuration component. 

• Section 8 presents the Flexibility Analytics Visualizations for Aggregators. 

• Section 9 presents the Energy Consumptions Visualizations for Building Managers. 
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• Section 10 provides a navigation to the user interfaces of the first release of the EXCESS Data Analytics 
Framework. 

• Section 11 provides the conclusions of the work done within Tasks 3.3 and 3.4. 
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2 EXCESS Data Analytics Framework Overview 

The EXCESS Data Analytics Framework comprises a part of the EXCESS system that enables the analysis of 

data coming from the EXCESS Data Management Platform in order to facilitate various operations in the 

EXCESS system towards the achievement of the PEB concept in the demo sites’ buildings. 

The different components of the EXCESS Data Analytics Framework exploit dedicated algorithms that 

analyze data residing in the Data Storage component of the EXCESS Data Management Platform, coming 

from the Distributed Information Systems of the demo sites’ buildings. The analysis on these data offers 

input to the Visualization Dashboards of the EXCESS system (Data Visualizations Framework as sub-part 

of the overall Data Analytics Framework), which provide valuable information to the aggregators and the 

building managers of the demo sites. Moreover, the analyzed data that contain flexibility, comfort and 

forecasting details feed the MPC components of the demo sites’ buildings in order to enable the optimal 

control of devices and loads in the demo sites’ buildings and realize the PEB concept. 

As presented in the figure below, the EXCESS Data Analytics Framework comprises the Comfort Profiling 

component, the Demand Forecasting component, the Generation Forecasting component, the Dynamic 

VPP Configuration component, the Context-Aware Flexibility Profiling and Analytics component and 

encapsulates the Flexibility Analytics Visualizations and the Energy Consumptions Visualizations. 

 

Figure 2-1: EXCESS High-level ICT Architecture (red-dotted area described in current deliverable) 

The Comfort Profiling component enables through the analysis of data coming from sensors and 

actuators in the apartments of the demo sites’ buildings, the definition of the comfort profiles of the 

building occupants. 

The Demand Forecasting component allows the specification of short-term forecasts for the demand of 

devices and loads of the demo sites’ building by analyzing data coming from their operation and the local 

weather stations near these buildings. 
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The Generation Forecasting component facilitates the specification of short-term forecasts for the 

generation of energy components of the demo sites’ building by analyzing data coming from their 

operation and the local weather stations near these buildings. 

The Dynamic VPP (Virtual Power Plant) Configuration component consolidates and analyses the 

flexibilities offered by the building occupants and allows the aggregators to make the necessary cluster 

configurations in order to trade these flexibility clusters in the local energy markets. 

The Context-Aware Flexiblity Profiling and Analytics component enables the definition of flexibility 

profiles through the combination and analysis of the comfort profiles of building occupants along with the 

demand and generation forecasts of demo sites’ buildings. These flexibility profiles are the input for the 

operation of the MPC components in the demo sites’ buildings. 

The Flexibility Analytics Visualizations for Aggregators allow the monitoring of flexibility clusters by the 

aggregators through intuitive dashboards in order to make the necessary configurations for the trading of 

flexibilities of building occupants to the local energy market. 

The Energy Consumptions Visualizations for Building Managers facilitate the monitoring of the energy 

consumption within the demo sites’ buildings by building managers through dashboards in order to 

understand the energy behaviour of the building occupants and discover ways towards energy savings 

through optimal energy consumption. 

The first release of the EXCESS Data Analytics Framework (Visualization Dashboards) is deployed 
at: https://dashboards.excess.s5labs.eu/ 

(credentials can be provided upon request) 

 

The various components of the EXCESS Data Analytics Framework along with the EXCESS Visualization 

Dashboards are described in further detail in the following sections of the deliverable. 
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3 Comfort Profiling component 

3.1 Design and functionalities 

3.1.1 State of the Art 
Human comfort is typically regarded as a condition of mind that expresses satisfaction within an 

environment. As such, comfort is influenced by several factors, either static (e.g. gender, race) or dynamic 

(e.g. age, psychology, weather). Research studies have shown that feeling comfortable has a significant 

impact on peoples' life, their health, well-being and productivity. Moreover, the knowledge of when or in 

which conditions a human feels satisfied (or dissatisfied) is an important factor in determining a building's 

energy demand which can lead in an optimal energy control strategy for modern “smart” buildings. For 

these reasons, the research interest in human comfort within built environments has grown exponentially 

during the last decade [1].  

The most recent trend investigates individual behaviours and tries to predict comfort preferences directly 

from data collected in their everyday environment in contrast to more generic approaches that base their 

findings in aggregated responses. The modelling of the individual preferences of building occupants and 

the identification of their comfort boundaries is called comfort profiling. Such personalized comfort 

models should be cost-effective, use easily obtainable data and be able to adapt as updated information 

is introduced [2]. Most of the comfort profiling research is focused on thermal and visual comfort, since 

these two factors can be controlled more effectively and improve energy savings [3]. 

Indicatively, Zhao et al. study the thermal preferences of employees in an office environment and result 

in a data-driven personalized and dynamic comfort model, which integrates the temporal dimension as 

well as the current state of the subjects in the form of voting [4]. A drawback of this approach is that it 

requires the participation (voting) of the occupants constantly in order to set the comfort setpoint of the 

installed HVAC system. In a similar fashion, Li et al. manage to successfully apply a Random Forest classifier 

using human physiological and behavioural data in order to decide the appropriate HVAC control strategy 

in a building environment [5]. Another approach produces a range of acceptable temperature values by 

analyzing the time-series data of the indoor operative temperature and the occupants’ feedback coming 

from daily questionnaires [6], while the authors in [7] extract thermal profiles from the occupants and 

divide them in three groups depending on the time it takes for each subject to feel discomfort. 

For visual dynamic preferences, the literature has less to provide. Typically, lighting profiles are provided 

as part of the early design stages of a building and are related to natural daylight control strategies [8, 9, 

10]. A thorough study for the modelling of non-static lighting preference profiles is provided in [11]. The 

authors use a clustering technique to group occupants based on their control actions and luminaire output 

data, as well as feedback from questionnaires and interviews. Malavazos et al., on the other hand, 

introduce a learning model of user preferences that employes ambient conditions and infers comfort level 

by the occupants’ control actions (or lack of) [12].  

 

3.1.2 Description of functionalities 
The EXCESS comfort profiling component offers a bundle of functionalities that can be used to extract 

thermal and visual comfort boundaries, either:  
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a) as personalized aggregated information that averages the subject’s behaviour from a temporal 

perspective (i.e. building a temporal behaviour profile, per time of day, per day of the week, per 

month or per season), or, 

b) as personalized aggregated information that averages the subject’s behaviour as a distribution on 

the temperature and illuminance scale (i.e. building a conditions’ based profile) 
 

In order to provide these functionalities as a service, we have implemented a pipeline of various data 

processing steps which produces the required statistical results, such as: 

• Thermal preferences (comfort temperature range) per day of week, per month, per time of day 

• Visual preferences (comfort Illumination range) per day of week, per month, per time of day  

• Thermal comfort distribution  

• Visual comfort distribution 

 
In more detail, the functionalities of the service are as follows: 

1. Input data retrieval: In order for the model to run, four types of data are required:  

• historic values of indoor environmental conditions, such as temperature, humidity, illuminance  

• historic log of human actions and events, like turning on/off a HVAC system, switching on/off the 

lights, setting a temperature setpoint, etc. 

• temporal information for the datetime of the requested forecast (which is directly available) 

• weather forecast in order to extract the required features for the estimations to be made.  

2. Input data preprocessing and feature creation: To bring the input data in an appropriate format, i.e. 

in the format required to extract useful insights, we perform a number of data manipulation steps, 

indicatively: 

• Using the datetime feature, we produce new temporal/calendar features (such as month, 

weekday, hour). 

• Using the weather forecast, we extract the required features and format them in respect to 

measurement types and units.  

• We apply other data pre-processing steps such as normalization on numeric features, filling null 

values, as needed. 

3. Data Analysis: Once the input data have been appropriately processed, we perform their analysis in 

order to extract useful insights and statistics. An indicative example of the performed computations 

includes finding the average (also minimum, maximum, median) of the indoor 

temperature/illuminance/humidity across different times of the day, across seasons and days of the 

week. Another example involves processing the input data that indicate user actions in order to 

extract the implicitly provided feedback regarding their comfort. 

4. Provision of results through API: The service offers endpoints through which the most important 

aspects of the analyzed data can be retrieved. For instance, one endpoint returns the aforementioned 

average illuminance levels during the different hours of the day and this can be filtered according to 

the season and/or weekday. 
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3.2 Technologies and tools 

The component is implemented in Python and the main libraries that are used are: scikit-learn1, pandas2 

and NumPy3. 

3.3 Software package repository 

The Comfort Profiling component is closed source and no source code is available publicly. The source 

code and the related deployment instructions are maintained in the related private repositories and the 

corresponding subcomponents are containerized with Docker. 

 

  

 
1 https://scikit-learn.org/stable/ 
2 https://pandas.pydata.org/ 
3 https://numpy.org/ 
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4 Demand Forecasting Component 

4.1 Design and functionalities (HVAC) 

4.1.1 State of the Art 
Short-term demand forecasting has become an important tool in reducing the energy consumption of air 

conditioning systems. Indoor and outdoor environmental conditions, occupancy behavior, room usage, 

and building physical parameters are some of the factors that introduce randomness, oscillation, and low 

periodicity [13]. To tackle these problems, academics have investigated data-driven methods for time-

series prediction that can be categorized as time-series based, machine learning, and deep learning 

algorithms. Some indicative approaches are briefly presented below. 

Using past week’s AC consumption together with weather predictions, temporal features, and PV 

production measurements, Manivannan et al. [14] achieved better results on predicting the AC load using 

the Random Forest model compared to the multilayer perceptron (MLP). In another research, the authors 

implemented an LMA-based (Levenberg–Marquardt Algorithm) artificial neural that produced very 

promising results compared to other ANNs and multiple linear regression approaches [15]. Deep Neural 

Networks (DNNs) have grown in popularity recently, as their ability to describe complex non-linear effects 

has demonstrated increased prediction accuracy and efficiency [16, 17]. Xu et al. [18] demonstrated an 

attention-based LSTM network outperforming other ML models using AC-generated data.  

4.1.2 Description of functionalities 
The EXCESS demand forecasting component offers a service that produces hourly AC demand forecasts 

for a 24 hour ahead horizon. To provide this service, we have implemented a deep neural network for 

multi-step regression that generates hourly AC energy consumption predictions for the next 24 hours. 

Specifically, a multi-layer perceptron (ML) with five hidden layers and a mean squared error (MSE) loss 

function was used. The architecture consists of a decreasing number of neurons in each layer starting 

from the first layer and the rectified linear activation function (ReLU) function. Also, dropout layers 

between each hidden layer aid in reducing overfitting caused by the large capacity of the model. The 

model was trained for 40 epochs on: 

• 169-hour (past-week) historical values of AC energy consumption  

• Temporal/calendar features (e.g weekday and hour) that correspond to the most recent datetime 

The trained model is then used to generate forecasts on an hourly basis. The forecast is offered as a service 

and can be invoked by the provided endpoint. 

In more detail, the functionalities of this service are as follows: 

1. Input data retrieval: To run the model, two types of input are required: 

• Historical values of AC demand which are made available through the actual demand 

measurements 

• Temporal information for the datetime of the most recent input (which is directly available) 

2. Input data preprocessing and feature creation: To bring the input data in an appropriate format, i.e. 

in the format required for the trained model to be applied on, some preprocessing steps are 

implemented that are applied on input data: 
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• Temporal/Calendar features are created from the datetime (month, weekday, day of month, 

hour) 

• Lag features are created from the historical AC consumption values 

• Numerical features are scaled  

3. Model application: Once the input data have been appropriately processed, the trained model is 

applied to obtain the hourly AC energy consumption forecasts for the next 24 hours. 

4. Provision of the forecast through API: The service offers an endpoint through which the 24 values that 

correspond to the most recently generated forecast can be retrieved. As the service is scheduled to 

be executed on an hourly basis, the forecast will be updated hourly, thus providing a 24-hour ahead 

sliding window of expected AC energy demand. 

4.2 Design and functionalities (DHW) 

4.2.1 State of the Art 
Domestic hot water (DHW) heating contributes to a large percentage of the energy use in the building 

sector. Emerging DHW consumption patterns are often complicated and highly fluctuating. In recent 

research, machine learning approaches are gaining popularity in predicting the future DHW demand in 

residential buildings by modelling complex relations between various parameters like building location, 

usage purpose, occupant behavior, temporal features, etc. [19, 20]. 

Several forecasting strategies have been investigated, including statistical, time-series-based, machine 

learning, and deep learning methods. For example, Autoregressive Integrated Moving Average (ARIMA) 

models trained on a window of historical data are often used for next-day hourly predictions [21, 22]. 

Furthermore, a support vector machine (SVM) was used to model shower habits using data from 7 

residents and the predictions were utilized for the development of an energy-saving control strategy [23]. 

In addition, artificial neural networks (ANN) have been a popular choice among researchers lately. Trained 

with historical, temporal, and often meteorological data they manage to capture the uncertainty in both 

the overall trend, seasonality, and additional observation noises [24, 25, 26]. 

4.2.2 Description of functionalities 
The EXCESS demand forecasting component offers a service that generates hourly DHW demand forecasts 

for a 24 hour ahead horizon. In order to provide this service, we have implemented a multi-step regressor 

model based on an artificial neural network that generates hourly hot-water energy consumption 

predictions for the next 24 hours. Specifically, a multi-layer perceptron (MLP) with two hidden and two 

dropout layers was trained on: 

• 24-hour historical values of DHW consumption 

• Temporal/calendar features (e.g. weekday and hour) that correspond to the datetimes for which 

the forecast is requested 

• temperature forecast for the timesteps for which the demand forecast will be generated 

The trained model is then used to generate new forecasts on an hourly basis. The forecast is offered as a 

service and can be invoked by the provided endpoint.  

In more detail, the functionalities of this service are as follows: 

1. Input data retrieval: In order for the model to run, three types of input are required:  
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• historic values of DHW demand which are made available through the actual demand 

measurements 

• temporal information for the datetime of the requested forecast (which are directly available) 

• weather forecast in order to extract the required temperature features for the model  

2. Input data preprocessing and feature creation: To bring the input data in an appropriate format, i.e. 

in the format required to apply the trained model: 

• Temporal/Calendar features are created from the datetime (month, weekday, hour) 

• Lag features are created from the historical DHW consumption values 

• Temperature forecast features are created based on the retrieved weather forecast data 

• Numeric features are scaled between zero and one 

3. Model application: Once the input data have been appropriately processed, the trained model is 

applied to obtain the hourly demand forecast for the DHW usage in the next 24 hours. 

4. Provision of forecast through API: The service offers an endpoint through which the 24 values that 

correspond to the most recently generated forecast can be retrieved. As the service is scheduled to 

be executed on an hourly basis, the forecast will be updated hourly, thus providing a 24-hour ahead 

sliding window of expected DHW demand. 

4.3 Design and functionalities (Lights) 

4.3.1 State of the Art 
Despite the fact that electrical lighting consumption in a building does not have the same impact in energy 

management strategies as the consumption of a HVAC or a water heating system, it is still of great value, 

especially in office environments, because it can be easily controlled and the appropriate use of daylight 

may lead to significant energy savings. To this end, the occupant-centric, short-term forecasting of lighting 

load can assist in the optimization of smart building energy management systems, while it can provide 

useful information for network operators and retailers to improve on energy efficiency and minimize costs 

[27]. 

Most of the data-driven forecasting methods for energy consumption, utilize statistical algorithms  and 

machine learning models, including support vector machines (SVM), decision trees, and artificial neural 

networks (ANN), among others [28][29]. More recently, Shan et al. employ a novel ensemble ANN 

prediction model in order to address linear and nonlinear issues that characterize electricity consumption 

[30]. Amasyali et al., however, highlight the lack of studies for lighting energy consumption prediction, 

although it is considered essential for a building’s energy efficiency [31], while Runger and Zmeureanu in 

their thorough study of the field conclude the same thing; lighting forecasting remains a relatively 

untouched, yet essential part of energy load control and management [32].  

In the few dedicated works that are available, office buildings are dominant. Liu and Chen utilize the hourly 

lightining energy consumption, the solar radiation instensity and the number of people in the  office, to 

feed a support vector regressor and predict next hour’s load [33]. The proposed method claims to be 

better than a simple RBF neural network and demonstrates better generalization capabilities. An SVM-

based approach for commercial buildings is also presented in [34], where the daily lighting consumption 

is estimated based on two features: the daily average sky cover and the day type (i.e. weekday, weekend, 

holiday, etc). In the rest of the related studies, the task is partially covered by an overall energy 
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consumption model such as the work in [35] and [36]. These approaches, however, fail to capture the 

impact of lights usage in consumption trends and saving opportunities. 

4.3.2 Description of functionalities 
The EXCESS demand forecasting component offers a service that is able to make predictions of lighting 

devices consumption for each of the next 24 hours.  

The underlying regressor model that implements this forecast is a trained deep feed-forward multi-output 

neural network. As far as the network architecture is concerned, the NN consists of 5 dense layers 

followed by a ReLU activation, with the layer’s size decreasing as the depth increases. Due to the 

network’s depth, dropout layers were added between each layer to provide robustness against 

overfitting. The model was trained for 40 epochs on a training set, every entry of which refers to a specific 

datetime and consists of the energy consumption measurements of lighting-devices consumption for the 

duration of the previous week of the corresponding datetime combined with some temporal features 

providing information about the position of the corresponding datetime on the time grid.  

The trained model is then used to generate forecasts on an hourly basis. The forecast is offered as a service 

and can be invoked by the provided endpoint.  

The functionalities offered by the lights demand forecasting service are the following: 

1. Input data retrieval: The model needs to be provided with information about 

• the current datetime from which temporal information will be extracted 

• the latest energy consumption measurements for lights usage, i.e. the actual measurements 

2. Input data preprocessing - feature creation: To bring the input data in an appropriate format, i.e. in 

the format required for the trained model to be applied on, some preprocessing steps are 

implemented that are applied on input data.  In this stage, the service: 

• Produces the lag features from the historical consumption data,  

• Produces the temporal features from the datetime feature and  

• Scales the newly created features into the [0,1] interval.  

3. Model application: The preprocessed data are fed into the trained model. The model then produces 

24 output values that correspond to the forecasts for the next 24 hours. 

4. Provision of the forecast through an API: The service offers an endpoint through which the 24 values 

that correspond to the most recently generated forecast can be retrieved. As the service is scheduled 

to be executed on an hourly basis, the forecast will be updated hourly, thus providing a 24-hour ahead 

sliding window of expected lighting-devices demand. 

4.4 Technologies and Tools 

The Demand Forecasting component is implemented in Python and the main libraries and frameworks 

that are used are: scikit-learn, TensorFlow4, Keras5, pandas and NumPy. 

 
4 https://www.tensorflow.org/ 
5 https://keras.io/ 
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4.5 Software package repository 

The Demand Forecasting component is closed source and no source code is available publicly. The source 

code and the related deployment instructions are maintained in the related private repositories and the 

corresponding subcomponents are containerized with Docker. 
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5 Generation Forecasting Component 

5.1 Design and functionalities 

The objective is to develop a location-independent system that integrates the forecast layer into a MPC 

(Model Predictive Control) component as flexibly as possible. In the following chapters, the general basics 

of different approaches in the forecasting system are explained and illustrated using the Austrian demo 

site as an example. 

 

Figure 5-1: Simplified flowchart of the forecast infrastructure. Source: JR-LIFE 

Since the basis for all MPC levels is the forecast layer, it is necessary to create these forecasts as precisely 

as possible. The Forecast Layer consists of weather, load, PV and radiation. The weather module is 
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responsible for forecasting air temperature, cloudiness and radiation. In order to ensure a high quality of 

the weather forecasts, various established weather models (ICON, GFS, ECMWF, MOSMIX) are compared 

and statistically processed. Energy profiles for commercial and domestic buildings are estimated for the 

load forecast. The PV Forecast will use AI and statistical methods to predict the consumption and 

production of PV energy. Since the solar radiation on the building at a certain position of the sun is a 

relevant factor for the heating of the facade and the interior, the shading or solar radiation on the building 

is calculated on a daily and seasonal basis using a digital surface model with a resolution of 1m². This 

radiation calculation is also based on the weather forecasts and weather variables such as the global 

horizontal irradiance (GHI). The result is a 2-day forecast of solar radiation in hourly resolution, with the 

first hours being calculated in 15-minute resolution. These forecasts are then integrated into the other 

layers or the MPC. 

Finally, a flexible ecosystem with open-source applications should be created, which communicates 

internally and externally via standardized interfaces. The code quality, including documentation and API 

integration, should help to understand the system itself and make data exchange as easy as possible. 

 

Figure 5-2: Schematic representation of the MPC. Adapted from AEE Intec. Source: JR-LIFE. 

5.1.1 Weather Forecast 
Precise weather forecasts are essential for MPC calculations. A basic distinction can be made between 

two types of weather forecasts. On the one hand, there are weather forecasts, mostly prepared by 

weather services, and, on the other hand, direct raw data from numerical weather prediction models 

(NWP models). Depending on the application, both types offer certain advantages and disadvantages. If 

the forecasts are processed by reputable weather services, the forecasts are usually of high quality but 

also usually associated with costs. “Half-edited” weather forecasts from weather apps are often 

insufficiently prepared. These are often more of raw data from NWPs, which are only extracted from the 

location. Another disadvantage of these predictions is availability. As statistical methods are mostly used 

for processing, historical station data is required. These are also not distributed over a large area, but are 

Weather, PV, 

Load, Radiation 
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usually only available in sufficient quality in cities or larger localities. In the past, the raw data of NWPs 

was often not freely accessible, which often made it necessary to use weather services. Currently, 

however, the data from highly established models are freely accessible. The standardization of the data 

exchange format in recent years was also an important step in order to be able to use this raw data 

efficiently. The data are usually in GRIB format, but more often in netCDF format. Since weather forecasts 

are the basis of PV production and other energy related predictions, it is important not to rely on one 

forecast provider but to evaluate different models and forecasts. The quality and quantity of forecast 

providers depends on the region of the demo site and is therefore handled differently by the project 

partners. Because of the unstable air stratification in summer, a radiation prognosis in the Alpine region 

is much more difficult to accomplish than in more stable regions such as the Mediterranean region. And 

that's why different models and parameterizations can be better or worse. 

Austrian Demo Site 

The alpine region has always been a challenge for general and specific weather forecasts. The strong 

variability of the seasons and the complex topography make weather forecasting a great challenge all year 

round. Especially in summer, when convection is the main cause of cloud formation, good regional models 

are of great importance. 

The following models are currently available for Central Europe: GFS, WRF, COSMO, ECMWF (MET NO), 

ICON-D2 and MOSMIX, the latter not being a direct NWP model, but rather data from COSMO and ICON-

D2 linked and with a MOS (model output statistics) improved. In addition, it must be noted that the WRF 

data is not directly available, only the source code of the software. The model is nested with GFS and has 

to be calculated on its own server. In order to find the most suitable weather model for the project, the 

aforementioned models were statistically examined and compared. 

It turns out that overall, the GFS 0.25 performs worst of all models, especially as far as the GHI is 

concerned. If R² is very good for the temperature at 0.86, the forecast quality for the radiation is less good 

at 0.60. ICON-D2 and MET NO are better here with 0.65 and 0.73 respectively. MOSMIX currently seems 

to be the best model with an R² of 0.78 for radiation. The mean absolute error is also the lowest at 46.15. 

MET NO seems with an R² of 0.97 to be the best predictor of temperature. All models except MET NO 

underestimate the radiation on average. The temperature is also systematically underestimated by all 

models. MET NO shows the strongest underestimation of the temperature. This applies especially to the 

lows in the morning. The inner-city heat island effect could play a role here, which the models 

insufficiently recognize. The weather station "University of Graz" is a relatively "warm" station that is 

strongly influenced by the heat island effect. This may be the reason for the systematic underestimation 

of the models. Since the EXCESS demo site “tagger area” is more likely to be assigned to the outskirts of 

the city, the models could provide a more realistic picture here and the bias could be reduced. If the 

results do not change significantly in the future, MET NO will be used for the temperature forecast and 

MOSMIX for the radiation forecast. 

5.1.2 PV Forecast 
An important part of the calculations of the MPC is the optimal allocation of different (electrical) power 

sources. A focus in this project is the integration of power produced by PV plants on the site. Therefore 

the MPC needs a forecast of the power produced by PV plants as input. Methods for estimating power 

produced by PV plants depend on the available data. In this project, we will concentrate on methods that 

rely on (numerical weather prediction) NWPs as main underlying data for the power forecast. Generally, 
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methods that use NWPs show high ability skill in forecasting power produced by PV plants, and work best 

for lead times longer than a few hours. For short lead times using online data, can significantly improve 

the forecast quality, but at this stage of the project it is not planned to integrate this type of models in the 

algorithm. This means that in this project the task of the PV-Forecasts module is to translate the weather 

forecasts (radiation and temperature) into forecast of the produced power. For this task, one can broadly 

distinguish between two different modelling approaches. The first approach can be described as using 

physical models, meaning that a physical model calculates the power output from the physical properties 

of the PV plant, such as orientation; shading; efficiency at different light and temperature conditions; 

characteristics of the used inverter; etc.. The advantage of this method is that one can apply this type of 

model also without the need of actual measured power production. The disadvantage is that 

misspecification in the model can lead to a bias in the predicted forecasts, especially if some components 

of the PV plant change over time (e.g. efficiency of panels or inverters) this can lead to problems when 

the models are applied over a longer period of time. The second approach is to use black box models that 

relate the input (weather variables) to the output (produced power), without the aspiration to explain the 

physical processes involved. Examples of methods that use this approach are statistical methods like 

regression, or methods from machine learning (ML) like neural networks, support vector machines and 

random forests. The advantage of this approach is that one does not need the details of the PV plant. The 

disadvantage is that one needs data for the calibration of the methods. Which means forecasting of the 

plant can only start after enough data for the calibration was produced. Beside these two main modelling 

approaches, one can also use so called hybrid models (sometimes also called grey box models). Hybrid 

models are models, that in cooperate aspects of physical models and black box models, like only using a 

physical model for some parts of the system and use black models for the rest, or use statistical models 

that incorporate some of the key physical aspects of the system. 

In this project we use a variety of black box respectively hybrid models, from which the best model is 

chosen during the calibration phase of the modelling. For the computations, we use python. We use the 

libraries pvlib for physical modelling of the plant and sklearn for ML algorithm. For the statistical oriented 

models, we use R with the library mgcv and the rpy2 package as interface. 

We use a physical model from pvlib that calculates the power output of a physical plant. At the moment 

we only incorporate the kWp and the orientation of the considered plant and standard values for the rest 

of the system. Note that especially shading is not incorporated in this model now but might be added 

later. Further we can use statistical respectively ML models to account for shading. The purpose of the 

physical model is twofold; first, it can be used as a backup model when a new plant is installed. The second 

purpose is to use the forecast of the physical model as an input for statistical models respectively models 

from ML.  

From ML algorithm we use random forests as only representative. The reason is that random forests have 

(for the considered purpose) a similar performance like support vector machines or neural networks, but 

a smaller computational burden. As input for the random forest, we use azimuth and zenith angle and 

either direct and indirect radiation, or the forecast of the physical model. While the first model is a classical 

black box model, the second is a grey box model, where a black box corrects shading and bias. 

From the statistical Model we use General Additive Model (GAM) that uses as input the azimuth and 

zenith angle and the similar to the ML model the purpose of the GAM is to correct for bias and shading. 

Beside this model, we use also several models that use azimuth and zenith angle, either direct or indirect 
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radiation and temperature as input. These models are again from the GAM class but different model 

formulas are used, that represent the structure of the PV-system.  

5.1.3 Radiation Forecast 
To estimate the energy balance in a building, in addition to the exchange of temperature between inside 

and outside, the direct radiation on the facade is a relevant factor. On the one hand, radiation energy 

leads to an increase in the temperature of the building substance itself and on the other hand to an 

increase in the room temperature if radiant energy penetrates the interior through windows. The latter 

factor plays a much greater role in modern insulated buildings. Even if windows have good insulating 

properties, there is a certain greenhouse effect, which can have a significant influence on the interior 

temperature with large window areas. Therefore, this is an important parameter for control units of the 

buildings MPC, which must be predicted for a certain period of time. Since some controlled units 

sometimes react slower (e.g. heat pumps), the radiation on the facade must be forecast for a period of 

up to one day in advance. The forecast variables diffuse horizontal irradiance (DHI), direct normal 

irradiance (DNI) and global horizontal irradiance (GHI) depend on the position of the sun and the season, 

the atmosphere, especially clouds and the water vapor content of the air and surrounding objects, 

especially shadowing and reflection affected. In order to be able to map all these factors accurately and 

to create a reliable forecast, a system is set up that brings together different existing components and 

derives precise radiation forecasts with a resolution of less than 1m based on weather forecasts and a 

digital surface model. This makes it possible to determine the energy in W/m² for each point on a surface 

at a certain time of day. 

The basic structure of the software is written in Python, in particular with the library pvlib and pyrano. 

Other important components are EnergyPlus and Radiance. Compared to the usual, often commercial 

software, all components are open source and modern, while frequently used interfaces and exchange 

formats are used. In addition, instead of 3D models with often proprietary file formats, a surface model is 

used, which was generated from a LiDAR point cloud and is available in a common raster format (GeoTIFF). 

All file formats are in plain text and thus ensure maximum transparency. Surface models are currently 

freely available in many countries and therefore have a clear advantage over 3D building models, since 

often only the target building and not the surrounding buildings are included in the model.  

The simulation of the radiation modeling is based on the "Daylight Coefficient" method (Tragenza and 

Waters 1983). This method is often used to simulate indoor lighting, but with some modification it can 

also be used to calculate outdoor solar radiation (Bognar, Loonen, and Hensen 2021) [37]. Since ray tracing 

is very complex for each time step, this method avoids this and shows good performance even with high 

temporal resolution. The method is referred to as a 2-phase method by Bognar, Loonen, and Hensen 

(2021). 2 phases because on the one hand the daylight coefficient vector is calculated for each time step 

and on the other hand the luminance of the sky is calculated for each sky segment. 

 

𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 (
𝑊

𝑚2
) = 𝐷𝑎𝑦𝑙𝑖𝑔ℎ𝑡𝐶𝑜𝑒𝑓𝑓 ∗  𝑆𝑘𝑦𝐿𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒 

(1) 

 

Daylight coefficients are calculated numerically using DAYSIM. The radiation is discretized based on partial 

segments of the sky (𝛼) with a certain luminance (𝐸𝛼). Each sub-segment is created by the multiplication 
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of daylight coefficients (𝐷𝐶𝛼), luminance (𝐿𝛼) and angular size (𝑆𝛼) of each 𝛼𝑡ℎ sky segment. The sum of 

the radiation of all sky segments (∆𝐸𝛼) finally represents the incoming radiation at the viewer. 

 

∆𝐸𝛼 =  𝐷𝐶𝛼 ∗ 𝐿𝛼 ∗ ∆𝑆𝛼 (2) 

 

This model was modified by Bognar, Loonen, and Hensen (2021) [37] to use LiDAR point clouds as input 

data. LiDAR (Light Detection and Ranging) is an optical remote sensing technique that uses laser light to 

scan the Earth's surface densely, obtaining highly accurate X, Y, and Z values. The point clouds determined 

in this way are post-processed after the LiDAR data acquisition and integrated into a highly accurate 

georeferenced XYZ coordinate system by analyzing the laser time period, laser scanning angle, GPS 

position and INS information. Remote sensing products such as digital surface models (DSM) are then 

created from these point clouds. The big advantage compared to pure 3D models is the mostly open data 

format (TIFF), the easy availability and integration. The disadvantages are individual inaccuracies in the 

3D objects and the need for manual adaptation when modifying existing structures. In the point cloud-

based method, the daylight coefficient (𝐷𝐶𝛼) of the 2-phase method is calculated using 3 factors: 1) 

calculation of the flux-transfer coefficient of an empty scene, 2) calculation of the shading degree of each 

sky segment, 3) calculation of the diffuse reflected radiation of the neighboring objects. The radiation for 

each sensor point (𝐸𝑆𝑃) can be calculated as follows: 

 

𝐸𝑆𝑃 = ∑(𝐸𝑐𝑜𝑠,𝛼 ∗ (1 − 𝐶𝑅𝛼) + 𝐸𝑟,𝛼) ∗ 𝐿𝛼

𝑛

𝛼=0

 (3) 

 

𝑛 represents the number of sky segments. To ensure acceptably precise calculation, 2307 sky segments 

were generated. The sky segments can be thought of as looking at the zenith from a point on the surface. 
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Figure 5-3: Visualization of the 2307 sky 
segments. Source: JR-LIFE. 

 

 

Figure 5-4: Display of the cover ratio for a sensor 
point on the east facade. The shading in the 

southern area is caused by the stairwell. 
Shadowing by a building can be seen in the east. 

Source: JR-LIFE. 

 

𝐸𝑐𝑜𝑠,𝛼 represents the flux-transfer coefficient for an empty scene with no topography or shading objects. 

𝐶𝑅𝛼 is the degree of shading for a specific sensor point. Completely shaded sky segments have the value 

1 and non-shaded segments have the value 0. Since the shading can only affect a part of a segment, there 

are also values between 0 and 1. With 50% shading of the segment it would therefore have the value 0.5. 

The larger the segments, the more imprecise the calculation becomes. Therefore, care must be taken to 

calculate with at least 577 segments. As already mentioned, 2307 sky segments are simulated for the 

forecasts. 𝐸𝑟,𝛼 represents the reflection of neighboring objects as a flux-transfer coefficient. The 

luminance for a certain time of year and day is expressed in terms of 𝐿𝛼. Figure 5-5 illustrates the situation 

of building 10 in the Austrian demo site, based on a sunny and cloudy day. 
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Cover ratio 𝐶𝑅 Luminance 𝐿 on clear sunny day Luminance 𝐿 on cloudy day 

   

  

 

 

  

 

Figure 5-5: Coverage and luminance illustrated by sky segments. Source: JR-LIFE 

The above figure presents the south side of building 10 and a sunny and cloudy day on 1994-02-21 and 
1994-02-13 at 10:00 UTC, respectively. The yellow arrows from the Luminance Skymatrix to the Cover 
Ratio Skymatrix show you the angle at which the sun stands on a bright sunny day in relation to the shading 
objects. For the sensor point (SP) 280 you can see that this is shaded with 50W/m² at 10:00, whereby 
sensor point 21, in the higher area of the building, is exposed to direct solar radiation with 863W/m².  
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863W/m² 

50W/m² 

112W/m² 
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Austrian Demo Site 

The Tagger area with building 10 in Puchstraße in Graz is a building complex of several former old factory 

buildings. Building 10 stands northwest of the building complex and is surrounded by taller buildings to 

the south and east. When the sun is low, these buildings cause certain shading of the southern and eastern 

facades, especially from winter to spring. Since building 10 is to be converted into a student residence and 

windows are being installed in the facade, it is of particular interest to estimate the radiation on these 

windows. 

In the simulation, the coefficients previously calculated in preprocessing are multiplied by the luminosity 

𝐿. External programs are mostly used for this. In the first step, a sky matrix is created with gendaymtx. 

The basis for this is the Reinhart Patch division. As already mentioned, 2307 sky segments are created. 

Gendaymtx works with .wea input files, a program-internal weather data format. Since this format is 

hardly used in common software, a file converter was implemented, which converts Python 

pandas.DataFrames into .wea files. 𝐿 is calculated by gendaymtx for each time step. Finally, with 

dctimestep, the coefficients are multiplied by the matrix created by gendaymtx and post-processed with 

rmtxop. 

MOSMIX and ICON-D2 data from the DWD open data portal are used as weather input data, whereby 

these are available for the variables global horizontal irradiance (GHI), direct normal irradiance (DNI) and 

diffuse horizontal irradiance (DHI) in 15-minute time steps. For ICON-D2 raw data it should be mentioned 

that the radiation data does not represent the average of the time step as usual, but the average since 

the start of the run. The result of the simulation is the radiation in W/m² for each sensor point, whereby 

the result is linearly interpolated on the area to get a better visualization. Compared to preprocessing, the 

runtime of the simulation is only marginal. 

Python is a highly flexible programming language that is widely used in particular in the natural sciences 

but also in engineering. More and more open-source solutions are offered by software vendors and 

universities, like pyrano and pvlib with which a large part of the radiation simulation was implemented. 

The documentation of both libraries is excellent and using them with certain programming skills is 

relatively easy. It has also been shown that the use of a digital surface model enables the radiation to be 

calculated precisely. In addition to the point-based method, Pyrano also offers a method using a pure 3D 

model. This is useful if no DSM but a 3D model is available. The accuracy can be described as good in a 

first visual analysis. The calculations are also performant in terms of runtime, although unfortunately 

multiprocessing is not supported for the Pyrano library. It became clear that the number of sensor points 

and the number of sky segments play an important role in performance. On the one hand, the spatial 

accuracy decreases with a low number of segments and sensor points, and on the other hand, there are 

significant performance losses if the resolution is too high. A sensor density of 1sp/m² and a number of 

sky segments of 2307 is therefore ideal for most applications. However, the need for higher computing 

resources only arises when calculating the static coefficients, which only has to be carried out once. The 

dynamic component shows a high performance. This is especially important for on-demand predictions. 

The system was tested under Windows10 and under Linux with the operating system Ubuntu 20, whereby 

the use of Linux is preferable. 

5.2 Technologies and Tools 

A list of the technologies used for the development of the Generation Forecasting component is following: 
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• Programming languages: Python 3.8.5, R 4.1.2 

• Environment: Docker container with Linux Ubuntu20  

• Monitoring System: icinga2 

• Database: postgreSQL 

• Database Client: pgModeler 

• API: Gunicorn as HTTP server and flask as middleware, nginx as proxy 

• General important python libraries used 
logging (Logging system), subprocess (calling external processes), multiprocessing 

(parallelization), sqlalchemy or psycopg2 (database interaction), xarray (Handling netCDF files and 

multidimensional datasets), pandas (Handling data tables), numpy, dynaconf (Config handler), 

scipy 

• Weather forecasts 
Main Python libraries: pvlib, dwdGribExtractor, wetterdienst 

• Radiaton forecast 
3D Models: EnergyPlus 

3D Model Visualization and GUI: SketchUp 2017 with Euclide extension 

Geographic information system to handle georeferenced data like digital surface models: QGIS 

3.22.1 

Main Python libraries: pvlib, pyrano, geomeppy, eppy, mpl_toolkits, osgeo (Geographical files 

handler) 

External command line programs: radiance-online   

• PV forecast 
Main R libraries: solaR, mgcv, suncalc, lubridate, matrixStats 

Main Python libraries: pvlib, rpy2 (R <-> Python interface), sklearn (ml models), dill (object loader) 

5.3 Software package repository 

In order to exchange data such as PV, load and radiation forecasts among the various project partners in 

a standardized manner, a suitable interface was implemented that corresponds to all current standards 

of an API (Application Programming Interface). The API is based on Representational State Transfer (REST), 

a paradigm of the software architecture of distributed systems, especially for web services. This ensures 

that data can be exchanged via standardized queries (GET, POST). This means that every project partner 

has a flexible way of accessing the data generated by JOANNEUM RESEARCH. It does not matter which 

interface or which programming language is used. The main communication takes place via the internet 

and most programming languages support libraries which simplify the queries. The paradigm requires that 

all information an application needs to restore the page state be included in the request. The URI identifies 

the resource, while the HTTP header can contain information such as the type of access (GET, POST), 

return format or authentication. To ensure a high level of security, the JR API only uses GET requests and 

HTTPS encryption. In addition, queries can only be carried out by authenticated users who have to 

generate a token using their email address and a password. The token is valid for 60 minutes. When this 

time expires, the token must be requested again. The credentials must be requested from JR and cannot 

be modified. Via the API, all data required by other project partners is made available in the JSON format. 
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The whole System is implemented in Python and uses Gunicorn6 as the webserver with the Flask7 web 

framework. Gunicorn is a Python Web Server Gateway Interface (WSGI) HTTP server. It is a pre-fork 

worker model, ported from Ruby's Unicorn project. The Gunicorn server is broadly compatible with a 

number of web frameworks, simply implemented, light on server resources and fairly fast. The API can be 

called with the domain https://api.jr-excess.at and is illustrated in the following chapter with a Python 

example. More detailed documentation can be found at https://api.jr-excess.at. 

 

Libraries 

import requests 

Vars 

host = 'https://api.jr-excess.at' 

Authentication 

headers = { "x-access-token": token } 

req = requests.get(f'{host}/login', auth=('<email>', '<password>')) 

token = req.json()["token"] 

Radiation Forecast 

Get surfaces (wall_id, …)  

requests.get(f'{host}/radiation/walls', headers = headers) 

Get sensors (sensor_id, …)  

params = { 

    "wall_id": 2  

} 

requests.get(f'{host}/radiation/sensors', data = params, headers = 

headers) 

Radiation forecast for specific sensor IDs 

params = { 

    'sensor_ids': [24, 25, 26], 

    'time_start': '2021-02-13 09:00:00', 

    'time_end': '2021-02-13 14:00:00' 

} 

requests.get(f'{host}/radiation/forecasts', data = params, headers = 

headers) 

PV Forecast 

Get forecast runs 

 
6 https://gunicorn.org/ 
7 https://flask.palletsprojects.com/en/2.0.x/ 

https://api.jr-excess.at/
https://api.jr-excess.at/
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requests.get(f'{host}/pv/runs', headers = headers) 

The query can be limited in time. This means that only runs for a certain period of time are displayed with 

{'later_than': 'last'} being the last run. 

params = {'later_than': '2022-01-03 00:00:00'} 

requests.get(f'{host}/pv/runs', data = params, headers = headers) 

The forecast can now be queried via the run ID. Example for the prediction of the last run: 

x = requests.get(f'{host}/pv/runs', data = params, headers = headers) 

js = x.json() 

latest_run_id = dict(js[0])["id"] 

 

params = { 

    'runid': latest_run_id 

} 

 

requests.get(f'{host}/pv/forecasts', data = params, headers = headers) 
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6 Context-Aware Flexibility Profiling and Analytics Component 

6.1 Design and functionalities (HVAC) 

6.1.1 State of the Art 
Flexibility is defined as the modification of the energy consumption patterns in reaction to an external 

signal [38]. The estimation of the flexibility that can be offered to the grid is useful as it can be used to  

balance the electricity grid in a cost-efficient way, avoiding significant investments in new power plants 

and transmission lines. Demand response programs aim to achieve grid balancing by exploiting the 

flexibility that consumers can offer. Residential buildings are responsible for a significant amount of 

energy demand [39] and air conditioners in particular are responsible for an average of 45% of domestic 

electricity consumption [40]. Thus, the estimation of the AC flexibility is important for planning more 

targeted and efficient demand response programs. 

To quantify the flexibility that consumers can offer, most approaches focus on the formulation of one or 

more models that aim to describe the flexibility of appliances, the thermal characteristics, and the energy 

needs of the building under study. Chen, Y., et.al., (2019) [41] formulated models to estimate the potential 

flexibility that different resources can offer (e.g., thermal mass, appliances, HVAC system, water tank). 

Alic, O., & Filik, Ü.B. (2020) [39] built a dynamic model that expresses the correlation among the power 

consumption, temperature, and time of ACs activations. The scope was to estimate the AC energy 

reduction, by selecting lower desired indoor temperatures during high pricing periods. The authors of 

(Che, Y., et.al., 2019) [42] proposed an electric model to describe the operation of an AC and estimate its 

consumption. They suggested an approach to reduce the energy demand and at the same time maintain 

the indoor temperature stable, without compromising resident’s comfort.  

6.1.2 Description of functionalities 
The EXCESS context-aware flexibility profiling and analytics component offers a service that estimates the 

AC flexibility for a specific duration and AC settings (desired indoor temperatures).  

The service builds upon the services offered by the thermal comfort profiling component and the HVAC 

demand forecasting component, from which it receives information along the following axes: (a) the 

thermal conditions at which the user in the given context feels most comfortable and the boundaries (in 

terms of temperature) inside which he retains an adequate thermal comfort level even if not the optimal 

one and (b) the HVAC demand forecasts.  

The component further implements and makes use of 2 models: (a) a thermal model, implemented using 

a linear regressor, that computes the change in indoor temperature depending on the AC status and the 

the environmental conditions and (b) an AC state predictor, implemented using a random forest classifier, 

that based on indoor temperature changes and the difference of indoor temperature to the desired one 

predicts the AC activation states.  

Leveraging the above models, the AC consumption for a specific duration and desired temperature is 

estimated based on the AC activation states. The consumption difference between 2 unique temperatures 

(which are extracted from the thermal comfort profiles) equals the flexibility. Both models are trained on 

features related to AC historical consumption data, environmental and weather data. 

Following, the trained models are employed to estimate the flexibility based on new input data.  
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In more detail, in order to provide the flexibility forecasts, the component implements the functionalities  

presented below: 

1. Input data retrieval: In order for the model to run, the following types of input are required: 

• Historical AC consumption data 

• Historical indoor environmental data  

• Weather forecasts 

 

2. Input data preprocessing and feature creation. To bring the input data in an appropriate format, i.e. 

in the format required for the trained models to be applied, we perform the following steps as part 

of an automated data preprocessing pipeline: 

• Resample the dataset (change data resolution) if needed in order to have the same frequency as 

the one used during model training 

• Select the features related to the task and create new ones as needed 

• Normalize features, where applicable 

 

3. Model application: Once the input data have been appropriately processed, the trained models are 

applied as follows: 

a. Information from the thermal comfort profiles is leveraged to define the temperatures that are 

of interest in the specific case. 

b. The input features are fed to the thermal model which outputs an estimation of the indoor 

temperature change for the next time interval. 

c. Following, the state predictor estimates the next AC activation state based on the thermal model 

output and the desired indoor temperature. 

d. The AC consumption is computed using the predicted AC activation states (which are computed 

by applying the first two steps as many times as needed to get the results for the desired time 

interval). 

e. The flexibility is calculated as the difference of the AC consumption estimated for 2 different 

desired indoor temperatures 

 

4. Provision of results through API: The service offers an endpoint through which the flexibility forecasts 

per time step for the specified time interval can be retrieved. 

6.2 Technologies and Tools 

The component is implemented in Python and the main libraries that are used are: scikit-learn, pandas 

and NumPy. 

6.3 Software package repository 

The Context-Aware Flexibility Profiling and Analytics component is closed source and no source code is 

available publicly. The source code and the related deployment instructions are maintained in the related 

private repositories and the corresponding subcomponents are containerized with Docker.  
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7 Dynamic VPP Configuration Component 

7.1 Design and functionalities 

VITO develops a Dynamic VPP component that aggregates consumption and generation of multiple 

buildings and VPP shared assets (like shared generation or storage). This component manages a collection 

of buildings and shared assets, meaning that it creates aggregated consumption/injection plans that can 

be communicated with grid or market stakeholders. It as well characterizes the collective flexibility as 

well as the flexibility of each individual building and shared asset. In a first instance, this flexibility 

characterization is used to create an optimal consumption/injection plan by the optimal activation of 

flexibility in each of the buildings and shared assets.  The ‘remaining’ flexibility is then available to ensure 

that the VPP as a whole sticks to the agreed/committed consumption/injection plan.  Deviations that 

occur e.g. because of incorrect forecasts, will be self-corrected (auto-balanced) to not cause or be 

subjected to imbalance penalties. 

As extended functionality, an additional Flex Trading step can be added between the 

consumption/injection plan optimization, and the self-correction/auto-balancing. Thus, after the 

determination of the optimal VPP consumption/injection plan (and the disaggregation there-of in optimal 

building consumption/injection plans), flex services can be offered with the ‘remaining flexibility’, and if 

offers are accepted, plans can be adopted accordingly and communicated to relevant grid and market 

stakeholders, and the ‘remaining’ flexibility will be used for VPP self-correction (auto-balancing) of 

deviations in relation to the committed flex offering and the communicated injection/consumption plans. 

In contrast to (most traditional) consumption/injection plan forecast creation approaches that leverage 

AI and ML (like RL), our Dynamic VPP component employs a Model-Predictive approach. This means that 

although ML/AI is used to create models and forecastst, the optimal plans themselves are created by 

means of a Model Predictive Optimisation that uses these models and forecasts.  For small VPPs this can 

be done by solving an optimization problem for the collection of all buildings and all assets.  But it is also 

possible to solve the optimization problem for each individual building and shared asset, and then 

aggregate these plans.  The provided solution can be used in a hierarchical manner, and therefore scaled 

well for large VPPs as well.  An important advantage of this approach is that it does not require a – lengthy 

– training period, and does not need training data other than for the model and forecast creation.  Also, 

in contrast with traditional ML based approaches that assume a fixed set of buildings and VPP assets in 

the training and operational phase, our hierarchical model-predicitive approach can deal with a time-

varying collection of buildings and shared assets, and can deal with time-varying preference these may 

have. That’s why it is called a DYNAMIC VPP (aka Dynamic Coalition Manager (FHP8)).  Hence buildings 

may decide at any time (only constrained by the ‘closure times’ of committing flex service activation and 

consumption/injection plans to enter or leave the VPP, and changes its contribution/commitment (e.g. 

offered flex) to the VPP. 

The above described model-predicitive optimization framework that is used in the Dynamic VPP, is used 

as well in a Flexibility Analysis tool, called ABEPEM (Active Building Energy Performance Modelling tool: 

AmBIENCe9), to analyse the impact of a proposed composition or proposed change to the VPP e.g. adding 

or changing buildings characteristics, adding or changing building assets, adding or changing shared 

 
8 http://fhp-h2020.eu/ 
9 http://ambience-project.eu 

https://ambience-project.eu/


 
 

  

D3.3 EXCESS Flexibility Analytics Module 37 
 

assets.  Besides the impact of these VPP design changes (that impact the models that are used in the 

model-predicitive optimization), also the impact of different contextual scenarios (like climate or 

wheather conditions and profiles, tariff structures and price profiles, user preferences and setpoints, etc.) 

can be analysed.  This can be used to compare multiple considered VPP design options, taking into 

account multiple contextual scenarios, and analyze the sensitivity of the forecasted VPP performance to 

scenario changes. 

The VPP performance is forecasted by means of a model-predictive optimization that also will be used 

for the VPP during its operation. Hence it implicitly models the impact of an energy management system 

that takes optimal flex activation decisions based on models, preferences and user setpoints, and 

forecasts. And in the VPP analysis and design phase, this model predictive optimization is fed by scenarios 

for contextual information (e.g. related to climate/weather profiles, price profiles, etc.) that mimic 

forecasts in the operational phase.  

Using this approach, the impact of specific VPP design decisions and selected scenarios on the energy 

consumption/injection, but also carbon emissions and energy costs can be analysed to decide on an 

optimal VPP composition and design.  Specifically for the carbon emission quantification, this approach 

can take into account grid carbon intensity scenarios that account for assumed reductions over time – as 

the energy mix becomes greener year after year – but also (evolution of) intra-day carbon variations that 

can be optimally leveraged by the active control of flexibility. 

Specifically, the energy cost profile output of such a VPP analysis for a specific considered VPP 

composition and design can be combined with investment and other operational costs associated with 

the considered design to perform a financial and bankability analysis. 

As an example, this VPP configuration analysis will be used in the Belgian EXCESS pilot to analyse the 

impact of adding rooftop PV and PV-T on the carbon emissions and energy consumption cost of the 

(virtual) community of 20 social housing apartments and shared facilities.  Also, the specific impact of 

smart coordinared control of the collection of electric booster heaters in the apartment substations will 

be analyzed. 

7.2 Technologies and Tools 

The Dynamic VPP Configuration and Analysis component is leveraging model-predictive optimization 

technology that determines an optimal consumption plan (NOT control commands) for controllable assets 

(associated with buildings or shared to the VPP) [43].  The actual optimisation engine is integrated in a 

modular and flexible optimisation framework that makes it possible to describe the specific VPP 

composition in a JSON format.  This JSON description is then automatically parsed and combined with 

other relevant information like the optimization objective to generate the mathematical formulation that 

feeds the optimisation core algorithm. 

The JSON format description supports the definition of multi-energy multi-collector configuration.  I.e. it 

can combine multiple energy carriers (electricity, heat, gas) as well as multiple collectors for a specific 

energy carriers (e.g a collector per electricity phase, or a collector for space heating water and a collector 

for sanitary hot water production).  Assets can be connected to/between collectors.  This can be non-

controllable consumption assets, controllable consumption assets (like smart white-goods, or building 

space heating or sanitary hot water buffers or EVs), generation assets like rooftop PV, conversion assets 
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like heat-pumps (electricity to heat) or CHPs (gas to heat and electricity). And buffer assets (batteries, 

space heating buffers).   

Depending on the asset, it can have associated with it scenarios (e.g. non-controllable consumption, solar 

irradiation, outdoor T, etc), behaviour/state model (e.g. dynamic thermal behaviour of a building), and 

constraints related to state (e.g. max capacity of a battery) or usages (e.g. max charging power of a battery, 

max power of a heat-pump). Also collectors can have constraints associated to them (e.g. grid connection 

capacity).  On each of the connections between assets and collectors, and of the connection of collectors 

to the external world\grid, costs or prices can be allocated, for example, related to offtake from or 

injection to the main grid, or heat produced by the CHP, or electricity produced by the PV (e.g. they may 

be leased and therefore the produced electricity is not free), etc. All of this is taken into consideration for 

doing the model-predictive optimisation that quantifies optimal the consumption/injection (kWh profile), 

energy cost (€) and emissions (g CO2) of each building/asset as well as the VPP as a whole. 

 

Figure 7-1: Configuration example of a multi-energy multi-collector configuration for the model-
predictive optimisation framework 

This configuration functionality as well as the model-predictive multi-energy optimisation framework is 

not only available in the VPP analysis component, but is also deployed in the VPP operational planning 

and control engine.  It has been developed and used initially for Building Energy Management Systems, 

but due to its modularity and flexibility, can be deployed for clusters as buildings and VPPs as well. To 

further improve its scalability, extra functionality is being added to create and use more abstract flexibility 

representations (called Flex Graphs) and associated Flex Graph aggregation and Aggregated Optimal Plan 

disaggregation functionality.  

Additionally to this multi-energy optimisation framework and associated multi-energy multi-collector 

configuration tool, a Grey-Box model creation flow and tool is available to create building thermal dynamic 

models that are used by the model-predictive optimisation framework [44].  The developed flow creates 

such Grey-Box models from ‘measurements’ that can be either actual physical measurements from 

buildings, but that can well be virtual measurements taken from Digital Twin models of buildings, which 

is very useful when no actual physical measurements are available. Either because no measurements 
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were/are done, or because they can not be done because the building is not yet available (e.g. considered 

new-built, or considered renovation and one wants to account for and analyse the impact of the proposed 

renovation).  A flow and methodology is available in the latter case to automatically create simple shoe-

box Digital Twin models (one zone per floor) in Modelica from a standardized CSV description containing 

geometric information and thermal characteriscs information from used materials for floors, walls and 

windows.  This flow will be further improved (in other projects) to enable the creation of more 

sophisticated Modelic models starting from Digital Building BIM information based on the IFC or gbXML 

standard formats. 

7.3 Software package repository 

The described technologies and tools are IP protected: they build on back-ground IP developed in many 

past projects, which are enriched and improved to accommodate EXCESS specific requirements and 

learnings. 

The described functionality is available as a set of independent tools that run on VITO servers, and they 

will be used for the analysis of the Belgian Cordium pilot. The creation of web-service UI/Front-end is 

considered, so that it can be more easily used by non-experts to enter a considered VPP configuration (as 

a collection of Positive Energy Buildings) as well as associated building models and scenarios they would 

want to analyse. After providing this information to the UI/Front-end, the model-predictive optimization 

would be started to produce results in terms of energy consumption, energy cost and energy consumption 

related emissions. 

 

Figure 7-2: High-level Dynamic VPP Configuration component architecture 
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The VPP operational planning and control software (aka DEMS or DCM) is based on the same configuration 

functionality and optimisation framework that runs as well on a VITO server, and will be used for the 

optimal smart control of the electric booster heaters in the apartment substations.  To feed the 

forecasters and models, and regulary update/recalibrate status information that is relevant for the 

optimization process, it will connect to the apartments through the EXCESS Data Management Platform 

that collects the necessary data from a locally installed PLC system. A high-level overview of this 

architecture is presented in the above Figure 7-2. The interactions between the dynamic VPP 

configuration component and related tools and components is given in the figure below. 

 

 

Figure 7-3: Interactions between the different components and tools 
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8 Flexibility Analytics Visualizations for Aggregators 

8.1 Design and functionalities 

The Flexibility Analytics Visualizations component enables the aggregators to monitor continuously the 

flexibilities that are becoming available by the building occupants in the demo site building by offering 

intuitive dashboards that show the historical details but also short-term flexibility forecasts. The 

aggregators can select specific periods of time where they can view the past flexibilities of building 

occupants (in an anonymized way respecting their privacy) and understand their energy behaviour. 

Moreover, the additional flexibility forecasts give the opportunity to the aggregators to realize which 

building occupants can become available with flexibilities during the next 24 hours in order to participate 

in VPP clusters that can be traded in the local energy markets. The Flexibility Analytics Visualizations 

component comprises a valuable tool for the operations of the aggregators and the potential subsequent 

monetary gains of building occupants through flexibility training. 

A navigation to the Flexibility Analytics Visualizations component is presented in section 10. 

8.2 Technologies and Tools 

The Flexibility Analytics Visualizations component is written in Python. For the user interface 

implementation, Vue.js10 has been exploited, while for the backend implementation Django framework11 

has been used. 

8.3 Software package repository 

The Flexibility Analytics Visualizations component is closed source and no source code is available publicly. 

The source code and the related deployment instructions are maintained in the related private 

repositories and the corresponding subcomponents are containerized with Docker. 

 

 

 

  

 
10 https://vuejs.org/ 
11 https://www.django-rest-framework.org/ 
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9 Energy Consumptions Visualizations for Building Managers and 
Occupants 

9.1 Design and functionalities 

The Energy Consumptions Visualizations component allows the building managers to monitor the energy 

consumption within their demo sites’ buildings through self-descriptive dashboards and thus, assist them 

in understanding the energy behaviour of the building occupants (in an anonymized way respecting their 

privacy). The building managers can select specific time periods to view the energy consumption of 

specific apartments or devices in their demo sites’ buildings or also the overall building, while they can 

also see short-term forecasts of such energy consumptions. The Energy Consumptions Visualizations 

component provides also the visual and comfort profiles of apartments and various measurements for 

the indoor temperature, humidity and illuminance of the buildings’ apartments. Through the use of these 

dashboards the building managers and sunbsequently the building occupants may realize how the energy 

is consumed in their building and eventually move towards energy saving behaviours. 

A navigation to the Energy Consumptions Visualizations component is presented in section 10. 

9.2 Technologies and Tools 

The Energy Consumptions Visualizations component is written in Python. For the user interface 

implementation, Vue.js has been exploited, while for the backend implementation Django framework has 

been used. 

9.3 Software package repository 

The Energy Consumptions Visualizations component is closed source and no source code is available 

publicly. The source code and the related deployment instructions are maintained in the related private 

repositories and the corresponding subcomponents are containerized with Docker. 
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10 Navigation to the EXCESS Data Analytics Framework 

Within this section, the navigation to the EXCESS Data Analytics Framework is presented through 

descriptive screenshots. As only the Flexibilty Analytics Visualizations component and the Energy 

Consumptions Visualizations component have a user interface, screenshots are following only for these 

components of the EXCESS Data Analytics Framework. 

10.1 Login 

In this page, the user is prompted to enter his credentials (email address and password) in order to enter 

the dashboards. Depending on the type of the user (building manager or aggregator) the corresponding 

dashboards are displayed after the successful login. 

 

Figure 10-1: Login page 

10.2 Energy Consumptions Visualizations - Menu 

The Energy Consumptions Visualizations offer the opportunity to the building manager to navigate to the 

different visualization categories, namely the main dashboard with energy consumptions, the comfort 

visualizations and the sensor measurements. 
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Figure 10-2: Energy Consumptions Visuaizations Menu 

10.3 Energy Consumptions Visualizations – Main Dashboard 

In this page, the building manager may view the energy consumption of the building or a specific 

apartment or device. By selecting a certain time period, s/he can change the historical details that s/he 

desires to view. In addition, a 24-hr energy consumption forecast is displayed. 
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Figure 10-3: Energy Consumptions Visuaizations Main Dashboard 

10.4 Energy Consumptions Visualizations - Comfort 

In this page, the building manager can view the thermal and visual comfort profiles for every apartment 

of the building in the corresponding heatmaps. The time period can be changed to view certain historical 

information. 
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Figure 10-4: Energy Consumptions Visuaizations Comfort Dashboards 

10.5 Energy Consumptions Visualizations – Sensor measurements 

In this page, the building manager can view the different indoor measurements for an apartment 

regarding temperature, humidity and illuminance by selecting a specific time period. 
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Figure 10-5: Energy Consumptions Visualizations Sensor Measurements (1) 

 

Figure 10-6: Energy Consumptions Visualizations Sensor Measurements (2) 
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10.6 Flexibility Analytics Visualizations Dashboard 

In this page, the aggregator can monitor the historical flexibilities of the building or a specific apartment 

or device, by selecting a desired time period. In addition, a 24-hr flexibility forecast is displayed. 

 

 

Figure 10-7: Flexibility Analytics Visualizations Dashboard 
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11 Conclusions 

This deliverable has documented the activities of the Task 3.3 “Core ICT platform services” and Task 3.4 

“Flexibility analysis and forecasting component” that have driven the design and implementation of the 

EXCESS Data Analytics Framework. Its different components have been presented, namely the Comfort 

Profiling component, the Demand Forecasting component, the Generation Forecasting component, the 

Dynamic VPP Configuration component, the Context-Aware Flexibility Profiling and Analytics component, 

the Flexibility Analytics Visualizations and the Energy Consumptions Visualizations. The state-of-the-art 

on which these components have been designed and developed has been described and their 

functionalities have been defined along with information about their exploited technologies and software 

code. A navigation guide is also presented with the self-descriptive schreenshots of the first release of 

EXCESS Visualization Dashboards. 

The deliverable D3.3 has presented the first release of the EXCESS Data Analytics Framework. In M42 of 

the project, an updated version of the deliverable will be documented based on the feeback coming from 

the initial operation of the demo sites’ buildings and including also any enhancements and additional 

functionalities (such as Lights Flexibilities) in the final release of the EXCESS Data Analytics Framework. 
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